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Abstract

A powerful method to solve nonlinear first-order ordinary differential equations,
which is based on a geometrical understanding of the corresponding dynamics
of the so-called Lie systems, is developed. This method enables us not only
to solve some of these equations, but also gives geometrical explanations for
some, already known, ad hoc methods of dealing with such problems.

PACS numbers: 02.30.Hq, 02.30.Jr, 02.40.—k
Mathematics Subject Classification: 34A26, 34A05, 34A34, 17B66, 22E70

1. Introduction

Systems of nonautonomous first-order ordinary differential equations appear often in
Mathematics, Physics, Chemistry and Engineering, and therefore methods to solve them
and analyse their properties are especially interesting because they allow us to understand
many important problems in these various fields.

A special kind of these systems, the so-called Lie systems (or Lie—Scheffers systems)
[1-5], has recently been analysed in many papers [6—14]. An important property of such
systems is that they admit a certain set of time-dependent changes of variables which transforms
each Lie system into a new one [10]. Such changes can be used to transform a given Lie
system into an easily integrable one, i.e. into a Lie system related to a solvable Lie algebra of
vector fields. In all these cases, we can obtain constants of the motion, integrability conditions
or even solutions [14].

This transformation property is not only valid for Lie systems, but it still holds for a
more general set of systems of differential equations. In order to generalize this property,
we develop the concept of a quasi-Lie system, i.e. a system of nonautonomous differential
equations accompanied with a flow of diffeomorphisms transforming it into a Lie system. We
must stress that quasi-Lie systems are not equivalent to Lie systems in the trivial sense: the
transformations we use are time dependent and we might get time-dependent superposition
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rules for them; meanwhile, Lie systems are related to superposition rules which are time
independent. Furthermore, we define quasi-Lie schemes. A scheme is a procedure that, in
some cases, enables us to transform a given nonautonomous system of differential equations
into a Lie system. This scheme, when applied to Lie systems, gets back to the well-known
transformations of Lie systems, see [7]. However, many other important systems of first-order
differential equations can be studied by means of this new method. In this sense, the method
of quasi-Lie schemes may be viewed as an abstract unification of many ad hoc developed
integration methods existing in the literature.

The aim of this paper is to introduce and to analyse the properties of quasi-Lie schemes and
to illustrate the theory by developing some interesting examples. More specifically, in order to
the paper be self-contained, section 2 is devoted to review the theory of time-dependent vector
fields. Then, in section 3, we summarize some properties of Lie systems and in section 4
we study the quasi-Lie scheme concept which may be used to relate certain sort of systems
of differential equations to Lie systems. Such quasi-Lie schemes are applied in section 5
to analyse some interesting systems of differential equations. Some well-known differential
equations are analysed: dissipative Milne—Pinney equations, nonlinear oscillator and Emden
equations in order to recover some of their properties from a unified point of view. The field of
applications of these differential equations is very broad, i.e. just the Emden equation appears
in Mathematical Physics [15], Theoretical Physics [16], Astronomy [17], Astrophysics [18]
and the review by Wong [19] contains about 140 references. We also study a time-dependent
dissipative Mathews—Lakshmanan oscillator, and we provide a, as far as we know, new time-
dependent constant of the motion. Finally, in section 6, we sum up the conclusions of our paper
and give an outlook of possible problems to be studied by means of the methods developed
here.

2. Generalized flows and time-dependent vector fields

A nonautonomous system of first-order ordinary differential equations in a manifold N is
represented by a time-dependent vector field X = X(z, x) on such a manifold. On a non-
compact manifold, the vector field X,(x) = X (z, x), for a fixed ¢, is generally not defined
globally, but it is well defined on a neighbourhood of each point xo € N for sufficiently small
t. It is convenient to add time ¢ to the manifold and to consider the autonomization of our
system, i.e. the vector field

S d

X(t,x) = a7 + X(z, x),
defined on a neighbourhood N* of {0} x N in R x N. The vector field X, is then defined on
the open set of N,

NYX ={xo e N | (t,x) € N*},
forallz € R. If N¥ = N for all t € R, we speak about a global time-dependent vector field.
The system of differential equations associated with the time-dependent vector field X (¢, x)
is written in local coordinates

dx! ; . .

— = X'(t, x), i=1,...,.n=dimN,

dt
where X (t,x) = Y., X'(t,x)d/0x" is defined locally on the manifold for sufficiently
small 7.

A solution of this system is represented by a curve s > y (s) in N (integral curve) whose

tangent vector y at f, so at the point y (¢) of the manifold, equals X (¢, y(¢)). In other words,

y(@) =X, y(). (D
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It is well known that, at least for smooth X which we work with, for each x there is a unique
maximal solution y3° (r) of system (1) with the initial value xo, i.e. satisfying yy’ (0) = xo. This
solution is defined at least for s from a neighbourhood of 0. In case y;° () is defined for all
t € R, we speak about a global time solution. The collection of all maximal solutions of system
(1) gives rise to a (local) generalized flow g¥ on N. By a generalized flow g on N we understand
a smooth time-dependent family g, of local diffeomorphisms on N, g;(x) = g(t, x), such that
go = idy. More precisely, g is a smooth map from a neighbourhood N$ of {0} x N in R x N into
N, such that g, maps diffeomorphically the open submanifold N = {xo € N | (¢, x¢) € N¥}
onto its image, and go = idy. Again, for each xo € N there is a neighbourhood Uy, of xy in N
and € > 0O such that g; is defined on U,, for t € (—¢, €) and maps U,, diffeomorphically onto
& (U xo) .

If N° = N for all t € R, we speak about a global generalized flow. In this case,
gt € R g € Diff(N) may be viewed as a smooth curve in the diffeomorphism group
Diff(N) with gg = idy.

Here it is also convenient to autonomize the generalized flow g extending it to a single
local diffeomorphism

g, x) = (1,8(,x)) 2)

defined on the neighbourhood N¢ of {0} x N in R x N. The generalized flow g* induced by
the time-dependent vector field X is defined by

g% (1, x0) = yx' (). 3)
Note that, for g = g%, equation (3) can be rewritten in the form
X, =X(t,x)=gog " 4)

In the above formula, we understood X; and g; as maps from N into TN, where g,(x) is
the vector tangent to the curve s — g(s, x) at g(¢, x). Of course, the composition g o g, !,
sometimes called the right-logarithmic derivative of t — g,, is defined only for those points
xo € N for which it makes sense. But it is always the case locally for sufficiently small z.

Let us observe that equation (4) defines, in fact, a one-to-one correspondence between
generalized flows and time-dependent vector fields modulo the observation that the domains
of g, 0 g7! and X, need not coincide. In any case, however, g, o g”! and X, coincide in a
neighbourhood of any point for sufficiently small . One can simply say that the germs of X and
& 0 g ! coincide, where the germ in our context is understood as the class of corresponding
objects that coincide on a neighbourhood of {0} x N in R x N.

Indeed, for a given g, the corresponding time-dependent vector field is defined by (4).
Conversely, for a given X, equation (4) determines the germ of the generalized flow g(¢, x)
uniquely, as for each x = x( and for small ¢ equation (4) implies that t — g(¢, xo) is the
solution of the system defined by X with the initial value x¢. In this way we get the following.

Theorem 1. Equation (4) defines a one-to-one correspondence between the germs of
generalized flows and the germs of time-dependent vector fields on N. For compact N,
this correspondence reduces to a one-to-one correspondence between global time-dependent
vector fields and global generalized flows.

Any two generalized flows g and / can be composed: by definition (goh), = g, oh,, where, as
usual, we view g, o i, as a local diffeomorphism defined for points for which the composition
makes sense. It is important that in a neighbourhood of any point it really makes sense for
sufficiently small 7. As generalized flows correspond to time-dependent vector fields, this
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gives rise to an action of a generalized flow 4 on a time-dependent vector field X, giving rise
to hy X defined by the equation

g =hog¥ (5)
To obtain a more explicit form of this action, let us observe that

d(ho gx)t
dr

(haX); = o(h ogx)[_l = (h, ogrx + Dh,(g,x)) o (gX)t_l oh[_l,

and therefore
(hwX); = h; o h'+ Dhy (g 0 (8%);") o b/,
ie.
(haeX); = hy o h7' + ()4 (X)), (6)

where (h,), is the standard action of diffeomorphisms on vector fields. In a slightly different
form, this can be written as an action of time-dependent vector fields on time-dependent vector
fields:

(g% X =Y, +(g)) (X)) (7
For global time-dependent vector fields on compact manifolds, the latter defines a group
structure in global time-dependent vector fields. This is an infinite-dimensional analogue of a
group structure on paths in a finite-dimensional Lie algebra which has been used as a source
for a nice construction of the corresponding Lie group in [20]. Since every generalized flow
has the inverse, (g7');, = (g,)~', so generalized flows, or better to say, the corresponding
germs, form a group, and formula (7) allow us to compute the time-dependent vector field

(right-logarithmic derivative) X; ! associated with the inverse. It is the time-dependent vector
field

X7t =—(gX) . X (8)

For time-independent vector fields X, = X for all r we have (g,x )X = X and we also get
the well-known formula

x'=-x.

Note that, by definition, the integral curves of 4 X are of the form 4;(y (¢)), where y () are
integral curves of X. We can summarize our observation as follows.

Theorem 2. Equation (6) defines a natural action of generalized flows on time-dependent
vector fields. This action is a group action in the sense that

(o) xX = gx(hxX).

The integral curves of hy X are of the form h,(y(t)), for y(t) being an arbitrary integral
curve for X.

The above action of generalized flows on time-dependent vector fields can also be defined in
an elegant way by means of the corresponding autonomizations. It is namely easy to check
the following.

Theorem 3. For any generalized flow h and any time-dependent vector field X on a manifold
N, the standard action h, X of the diffeomorphism h, being the autonomization of h, on the
vector field X, being the autonomization of X, is the autonomization of the time-dependent
vector field hy X :

hoX =hyX.
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3. Lie systems and superposition rules

The conditions for the system determined by a time-dependent vector field X (¢, x) on a
manifold N ensuring that it admits a superposition rule, i.e. that there exists, at least locally
foranopen U C N xR*,amap ® : U — N,x = ®(xq), ..., X@m); k1, ..., ky), such that
its general solution can be written as

x(t) = q)(X(l)(t), - ,)C(m)(t); ki,...,ky),

where {x(,(t) | a =1, ..., m}is any family of particular solutions ‘in a general position” and
k = (ky, ..., k) is a set of n arbitrary constants, which were studied by Lie [1]. Let us stress
that the superposition function & is time independent.

The necessary and sufficient conditions say that the associated time-dependent vector
field X can be written as a linear combination

X, =Y by(t)X (@), ©)
a=1
such that the vector fields {X () | @ =1, ..., r} generate a finite-dimensional real Lie algebra,

the so-called Vessiot—Guldberg Lie algebra. The latter means that there exist 7> real numbers
Cqpy» Such that

[X(a)’X(ﬁ)]:anﬁyX(y)v O[,ﬂ: 1,...,}".
y=1

Linear systems are particular instances of Lie systems associated with a Vessiot—Guldberg Lie
algebra, isomorphic to the Lie algebra gl(n, R) and m = n in the homogeneous case, or the
corresponding affine algebra and m = n + 1 in the inhomogeneous one. The Riccati equation
is another example for which X, = by(¢)Yy + b1 (¢)Y| + b2(¢)Y, with

a il , 0
= —, Y1:X—, Y2:X—,

ax ox ox
closing on a Vessiot—Guldberg Lie algebra isomorphic to the Lie algebra sl(2, R), see [7, 9].
There is an action ®gi. : SL(2, R) x R — R of the Lie group SL(2, R) on R = R U oo
[7] such that the fundamental vector fields of this action are linear combinations with real
coefficients of the vector fields Y, Y; and Y>.

Another relevant example of a Lie system is given by a time-dependent right-invariant
vector field in a Lie group G. If {ay, ..., a,} is a basis of 7,G and X} are the corresponding
right-invariant vector fields, X&(g) = (R,).a,, then the time-dependent right-invariant vector
field

Yo

Xi == ba(XG,
a=1

defines a Lie system in G whose integral curves are solutions of the system g =
— > _1 ba (1) XE(g). Applying (R,-1(;))« to both sides, we see that g(r) satisfies

P
(Re10):8(1) = = ) ba(D)ag € T.G. (10)

a=1
Right invariance means that it is enough to know one solution, for instance the one starting from
the neutral element e, to know all the solutions of the equation with any initial condition, i.e. we
obtain the solution g'(z) with the initial condition g’(0) = go as Ry)g(?). A generalization
of the method used by Wei and Norman for linear systems [21] is very useful in solving

5



J. Phys. A: Math. Theor. 42 (2009) 335206 J F Carifiena et al

such equations and furthermore there exist reduction techniques that can also be used [11].
Finally, as right-invariant vector fields X® project onto the fundamental vector fields in each
homogeneous space of G, the solution of (10) allows us to find the general solution for
the corresponding Lie system in each homogeneous space. Conversely, the knowledge of
particular solutions of the associated system in a homogeneous space gives us a method for
reducing the problem to the corresponding isotropy group [11]. This equation is also important
because any Lie system described by a time-dependent vector field on a manifold N, like (9),
where the vector fields are complete and satisfy the same commutation relations as the basis
{aj,...,a,}, determines an action @1, : G Xx N — N such that the vector field X, is
the fundamental vector field corresponding to a,, and moreover, the integral curves for the
time-dependent vector field are obtained from the solutions of equation (10). More explicitly,
the general solution of the given Lie system is x(t) = ®rig(g(t), xo), where xy is the initial
condition of the solution and g () is the solution of equation (10) with g(0) = e.

The search for the number m of solutions and the superposition function & has
recently been studied from a geometric perspective [12]. Essentially, we should consider
‘diagonal prolongations’ to Nt X (x©), - -+, X(m), t), of the time-dependent vector field
X(t,x)=Y ", X'(t,x)d/0x', given by

m
X(X(O),.--,X(m),l)ZZXa(X(a)J), teR,
a=0
where X,(x),t) = Z?:l X! (X, 1)/ Bxéu), such that the extended system admits n
independent constants of the motion, which define the superposition function in an implicit
way.

4. Quasi-Lie systems and schemes

Definition 1. By a quasi-Lie system, we understand a pair (X, g) consisting of a time-
dependent vector field X on a manifold N (the system) and a generalized flow g on N (the
control) such that g% X is a Lie system.

Since for the Lie system g4 X we are able to produce the general solution out of a number of
known particular solutions, the knowledge of the control makes a similar procedure for our

initial system possible. Indeed, let & = ®(xy, ..., x,, k1, . . ., k,,) be a superposition function
for the Lie system g4 X, so that, knowing m solutions X(j), . .., Xon) of gx X, we can derive
the general solution of the form

)_C(O) = CD()_C(D, ey )_C(m), kl, ey kn)
If we now know m independent solutions, x(yy, . . ., X(s) of X, then, according to theorem 3,
Xq.(t) = g/(x,4(1)) are solutions of g4 X, producing a general solution of g4 X in the form
DXy, ... Xy, k1, ..., k). Itis now clear that

x) () =g o ®(g(x) (1), -\ & (X (1), ki, ..., Ky) (IT)

is a general solution of X. In this way, we have obtained a time-dependent superposition rule
for the system X. We can summarize the above considerations as follows.

Theorem 4. Any quasi-Lie system (X, g) admits a time-dependent superposition rule of form
(11), where @ is a superposition function for the Lie system gy X.

Of course, the above time-dependent superposition rule is practically meaningful in finding the
general solution of a system X only if the generalized flow g is explicitly known. An alternative

6
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abstract definition of a quasi-Lie system as a time-dependent vector field X for which there
exists a generalized flow g such that g4 X is a Lie system does not have much sense, as
every X would be a quasi-Lie system in this context. For instance, given a time-dependent
vector field X, the pair (X, (g¥)~") is a quasi-Lie system because (g%); ! o gX = idy, thus
(g¥)3' X = 0, which is a Lie system trivially. On the other hand, finding (¢*)~" is nothing
but solving our system X completely, so we just reduce to our original problem. In practice, it
is therefore crucial that the control g comes from a system which can be integrated effectively.
There are, however, many cases when our procedure works well and provides a geometrical
interpretation of many, originally developed ad hoc, methods of integration. Consider, for
instance, the following scheme that can lead to ‘nice’ quasi-Lie systems.

Take a finite-dimensional real vector space V of vector fields on N and consider the
family of all time-dependent vector fields X on N such that X, belongs to V on its domain, i.e.
X: € Vjyx. We will say that these are time-dependent vector fields taking values in V. The
time-dependent vector fields taking values in V depend on a finite family of control functions.
For example, take a basis {X, ..., X,} of V and consider a general time-dependent system
with values in V determined by b = b(¢) = (b1 (t), ..., b.(t)) as

X", =b;X;.

On the other hand, the nonautonomous systems of differential equations associated with
X € V|yx are not Lie systems in general, if V is not a Lie algebra itself. If we have
additionally a finitely parametrized family of local diffeomorphism, say g = g(ay, ..., a),
then any curve a = a(t) = (a;(t), ..., ax(t)) in the control parameters, defined for small 7,
gives rise to a generalized flow gf = g(a(?)). Let us assume additionally that there is a Lie
algebra V of vector fields contained in V. We can look for control functions a(f) such that
for certain b(z) we get that g5 X b has values in V, for each time 7. Let us denote this as

g5 X" e . (12)

This choice of control functions makes (X”, g) into a quasi-Lie system, so we get time-
dependent superposition rules for the corresponding systems X°.

Let us observe that in the case when all the generalized flows g“ preserve V, i.e. for each
time-dependent vector field X € V also 8% X b ¢ V, the inclusion (12) becomes a differential
equation for the control functions a(#) in terms of the functions b(¢). This situation is not so
rare as it may seem to be at the first sight. Suppose, for instance, that we find a Lie algebra
W C V such that [W, V] C V and that the time-dependent vector fields with values in W can
be effectively integrated to generalized flows. In this case, any time-dependent vector field
Y* with values in W gives rise to a generalized flow g which, in view of transformation rule
(7), preserves the set of time-dependent vector fields with values in V. For each b = b(¢),
the inclusion (12) becomes therefore a differential equation for the control function a = a(¢)
which often can be effectively solved.

Definition 2. Let W and V be finite-dimensional real vector spaces of vector fields on a
manifold N. We say that they form a quasi-Lie scheme S(W, V) if the following are satisfied:

(1) W is a vector subspace of V.
(2) W is a Lie algebra of vector fields, i.e. [W, W] C W.
(3) W normalizes V, i.e. [W, V] C V.

If V is a Lie algebra of vector fields V, we call the quasi-Lie scheme S(V, V) simply a Lie
scheme S(V).
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Remark 1. There is the largest Lie subalgebra we can use as W—the normalizer of V in V.
Sometimes, however, it is useful to consider smaller Lie subalgebras W.

We say that a time-dependent vector field X is in a quasi-Lie scheme S(W, V), and write
X € S(W, V), if X belongs to V on its domain, i.e. X, € V\N,X' Note that, by definition, the set
of all time-dependent vector fields belonging to S(W, V) depends only on V, and the choice
of W is irrelevant.

Now, given a quasi-Lie scheme S(W, V) which we will call sometimes simply a scheme,
we may consider the group G(W) of generalized flows associated with W.

Definition 3. We call the group of the scheme S(W, V) the group G(W) of generalized flows
corresponding to the time-dependent vector fields with values in W.

Proposition 1. (Main property of a scheme) Given a scheme S(W, V), a time-dependent
vector field X € S(W, V) and a generalized flow g € G(W), we get that g5 X € S(W, V).

The proof is obvious and follows from the fact that if Y is a generalized flow with values in
W and X takes values in V, then, according to formula (7), giX takes values in V as well, as
[W, V] C V and V is finite dimensional.

From the last definition, we can state the definition of a quasi-Lie system with respect to
a scheme.

Definition 4. Given a quasi-Lie scheme S(W,V) and a time-dependent vector field
X € S(W, V), we say that X is a quasi-Lie system with respect to S(W, V) if there exists a
generalized flow g € G(W) and a Lie algebra of vector fields Vo C V such that

gxX € S(Vo).

We emphasize that if X is a quasi-Lie system with respect to the scheme S(W, V), it
automatically admits a time-dependent superposition rule in the form given by (11). In the
following section, we apply our theory and illustrate these concepts with examples.

5. Applications of quasi-Lie schemes

The above-mentioned properties of quasi-Lie schemes and quasi-Lie systems can be used to
investigate some previously studied systems of differential equations [22-33] systematically
from this new perspective.

In this section, we apply quasi-Lie schemes to study dissipative Milne—Pinney equations,
nonlinear oscillators and Emden differential equations. More precisely, we first apply our
theory to dissipative Milne—Pinney equations. These systems cannot be treated with the theory
of Lie systems directly, but one can use a quasi-Lie scheme to transform them into Milne—
Pinney equations. These latter equations have been proved to be SODE Lie systems recently
[6, 13], and this fact enables us to get time-dependent superposition rules for dissipative
Milne—Pinney equations by means of the superposition rule found for non-dissipative ones.

Next, we analyse nonlinear oscillators. Perelomov studied some of these systems in order
to relate them to other important systems [28]. The cases investigated by Perelomov were
selected and obtained by means of ad hoc methods. Here we approach some instances treated
in [28] in order to explain Perelomov’s work from the point of view of the theory of quasi-Lie
schemes. As a result, we show how our theory provides time-dependent constants of the
motion and clarify some points about this work.

8
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We also analyse Emden equations. In this case, we use a quasi-Lie scheme to obtain
constants of the motion for Emden equations whose time-dependent coefficients satisfy certain
conditions. Notwithstanding, this is just a small instance of what can be made by means of
our scheme.

Finally, we analyse certain kind of dissipative Mathews—Lakshmanan oscillators [31-33].
Some kinds of these nonlinear oscillators have been recently investigated from the point of
view of classical mechanics [33]. Here we just perform a simple application of the theory of
quasi-Lie schemes to relate different types of dissipative Mathews—Lakschmanan oscillators
to the usual ones.

Let us provide a quasi-Lie scheme to deal with some of the systems investigated in
following subsections. Recall that we need to find vector spaces W and V of vector fields
satisfying the three conditions stated in definition 2. Consider the vector space V spanned by
the linear combinations of the vector fields

Ximxt =l Ximvl Xemvl Xs=xl ()
L=y S 3T T Ny P
on TR and take the vector subspace W C V generated by
0 0 0
Y1=X4=v%, Y2=X1=x%, Y3=X5=Xa.
Therefore, W is a solvable Lie algebra of vector fields,

[Y1,Y2]=-Y,, [Y1,Y3]1=0, [Y,V3]=-V,,
and taking into account that
[Y1, X2] = —X>, [Y1, X3] = X3, [Y2, X2] =0,
[Y2, X531 = X5 — X4, [Y3, Xp]l =nX,, [V3, X3]=—Xj5,

we see that V is invariant under the action of W, i.e. [W, V] C V. In this way, we get the
quasi-Lie scheme S(W, V). We stress that the vector space V is not a Lie algebra because the
commutator [X,, X3] is not in V. Moreover, there is no Lie algebra of vector fields V' 2 V
and thus V cannot be related to a Lie scheme.

The key tool provided by the scheme S(W, V) is the infinite-dimensional group
G(W) of generalized flows for the time-dependent vector fields with values in W, i.e.
a1 ()Y + ax(1)Y, + a3(t)Y3. The integration of such 7-dependent vector fields leads to the
description of the time-dependent changes of variables associated with G(W), i.e.

GgW) = {g(a(t),ﬂ(t), y ()

_ {xzm)x/ (D), y (1) > 0,a(0) = y(0) = 1, B0) = 0.

v=oa()v +B@1)x

5.1. Dissipative Milne—Pinney equations

In this section, we study the so-called dissipative Milne—Pinney equations. We show that the
first-order ordinary differential equations associated with these second-order ones in the usual
way, i.e. by considering velocities as new variables, are not Lie systems. However, the theory
of quasi-Lie schemes can be used to deal with such first-order systems. Here we provide a
scheme which enables us to transform a certain kind of dissipative Milne-Pinney equations,
considered as first-order systems, into some first-order Milne—Pinney equations already studied
by means of the theory of Lie systems [6]. As a result, we get a time-dependent superposition
rule for some of these dissipative Milne—Pinney equations.
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Let us state the problem under study. Consider the family of dissipative Milne—Pinney
equations of the form

% = a0+ b()x + ¢ (14)
X

We are mainly interested in the case c(#) # 0, so we assume that c(¢) has a constant sign for
the set of values of t we are considering.

Usually, we associate with such a second-order differential equation a system of first-order
differential equations by introducing a new variable v and relating the differential equation
(14) to the system of first-order differential equations

X =v,
. 1 (15)
v=a(t)v+b(t)x + c(t)—z.
X
In order to verify that the quasi-Lie scheme S(W, V), for the case n = —3, can be used

to handle the latter system, that is X € S(W, V), we have to ensure that the time-dependent
vector field
a t d
X;=v—+a@®v+b(t)x + Q —,
dx x3 ) dv
whose integral curves are solutions for system (15), is such that X, € V for every ¢ in an open
interval in R. In this way, in view of (13), we observe that

X;=a®)X4+b(®) X +c(t) X, + X3,

and thus X € S(W, V). Moreover V” = (X4, ..., X4) is not a Lie algebra of vector fields
because [X3, X»] ¢ V”. Also, there is no finite-dimensional real Lie algebra V' containing
V”. Thus, system (15) is not a Lie system but we can use the quasi-Lie scheme S(W, V) to
investigate it.

Let us consider the infinite-dimensional subgroup of G(W) given by its time-dependent
changes of variables with y(#) = 1. According to the general theory of quasi-Lie schemes,
these time-dependent changes of variables enable us to transform system (15) into a new one
again describing the integral curves for a time-dependent vector field X’ € S(W, V), that is

X, =dO)Xs+b )X+ ()Xo +d (1) X3+ €' (1) Xs. (16)

The new coefficients are

a0 = at) - By - 22,
() )
b'(t) = 0] +a(t)M _Po &
25((;)) at)  al) o)
) = m,
d'(1) = a(t),
e'(t) = p().
The integral curves for the time-dependent vector field (16) are solutions of the system
& BOx" +a (),
dr

dv’:<@+ B B0 B(t))x, an

dr  \a@) alt)y  a) a)
a(z))v, ct) 1

+<a(l‘)—ﬁ(f)—m ot(t))?'

10
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As it was said in Section 4, we use schemes to transform the corresponding systems of first-
order differential equations into Lie ones. So, in this case, we must find a Lie algebra of vector
fields Vo C V and a generalized flow g € G(W) such that gx X € S(Vy). This leads to a
system of ordinary differential equations for the functions «(¢), (¢) and some integrability
conditions about the initial functions a(¢), b(¢) and c(¢) for such a time-dependent change of
variables to exist.

In order to find a proper Lie algebra of vector fields Vy, C V, note that Milne—Pinney
equations studied in [6] are Lie systems in the family of differential equations defined by
systems (15) and therefore it is natural to look for the conditions needed to transform a given
system (15), described by the time-dependent vector field X;, into one of these first-order
Milne—Pinney equations of the form

= f®v,

k 18
i):—w(t)x+f(t)x—3, (18)

where k is a constant, i.e. a system describing the integral curves for a time-dependent vector
field with values in the Lie algebra of vector fields [6]

Vo = (X3 + kX2, X1, (X5 — X4)).
As aresult, we get that 8 = 0, « = f and, furthermore, the functions «, a and ¢ must satisfy
ka® = c, & —aa =0, (19)

so that ¢ must be of a constant sign equal to that of k. The second condition is a differential
equation for o and the first one determines c in terms of «. Therefore, both conditions lead to
a relation between ¢ and a providing the integrability condition

c(t) = kexp (2A(t)), and A(t) = /a(t)dt, (20)

and showing, in view of (17)-(19), that
a(t) =exp (A(r)) and w(t) = —b(1)exp (—A(1)),

where we choose the constants of integration in order to get «(0) = 1 as required.
Summing up the preceding results, under the integrability condition (20), the first-order
Milne—Pinney equation (15) can be transformed into the system

dx/

P (A(0) V',

dv’ , k

Fri b(t)exp (—A(t)) x" +exp (A1) —3,
t X

by means of the time-dependent change of variables

x' = x,

g (exp(A(1)),0,1) = {v’ = exp (A(1)) v.

Note 5.1. The previous change of variables is a particular instance of the so-called Liouville
transformation [34].

Now, the final Milne-Pinney equation can be rewritten by means of the time
reparametrization

(1) =/exp (A(n) dr,
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as
dx’ ,
— =,
ke "
v
T = OXP (240 bl ()Y + —.

These systems were analysed in [7], and there it was shown through the theory of Lie systems
that they admit the constant of the motion

N
I =G —ox) +k (é) ,
X

where (X, v) is a solution of the system

dx  _

— =0,

dr

dv _
— =exp (—2A@)) b(1)x,
dr

which can be written as a second-order differential equation
d*x B
— =exp (—2A()) b(1)x.

de2
If we invert the time reparametrization, we obtain the following differential equation:
X—a®x —b)x =0, (21)

which is the linear differential equation associated with the initial Milne—Pinney equation.
As it was shown in [6], we can obtain, by means of the theory of Lie systems, the following
superposition rule:

, V2

| X102 — D1 X2

12
x (szf + 1152 £ VAL L — k(X,0, — 131132)2)"51)?2) ,

and as the time-dependent transformation performed does not change the variable x, we get
the time-dependent superposition rule

2a(t k . .
& (]2)_612 + IIJ_C% + \/4[1]2 — ——(x1xp — )_Cl)_Cz)z)_Cl)_Cg>

172

|X1X2 — X1 X2 a?(1)

in terms of a set of solutions of the second-order linear system (21).
Summing up, the application of our scheme to the family of dissipative Milne—Pinney
equations

X=a()x +b(t)x +exp <2 / a(l)dt) )%

shows that it admits a time-dependent superposition principle,

172

V2a(t) k ) .
= ———— | byi+ 1y, £ [4hh — —— (i — i)y |
[y1¥2 = y2 91 o (1)

in terms of two independent solutions y; and y; for the differential equation
y—a®)y—b)y=0.

So, we have fully detailed a particular application of the theory of quasi-Lie schemes to
dissipative Milne—Pinney equations. As a result, we provide a time-dependent superposition
rule for a family of such systems. Another paper dealing with such an approach to dissipative
Milne-Pinney equations and explaining some of their properties can be found in [35].

12
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5.2. Nonlinear oscillators

As a second application of our theory, we use quasi-Lie schemes to deal with a certain kind of
nonlinear oscillators. The main objective of this section is to explain some properties of some
time-dependent nonlinear oscillators studied by Perelomov in [28]. We also furnish with, as
far as we know, a new constant of the motion for these systems.

Consider the subset of the family of nonlinear oscillators investigated in [28]:

X=b{)x +c(t)x", n#0,1.

The cases n = 0, 1 are omitted because they can be handled with the usual theory of Lie
systems. Like in the above section, we link the above second-order ordinary differential
equation to the first-order system

{)'c =, 22)

U =b(t)x +c(t)x".
Now, we have to go over whether the solutions of system (22) are integral curves for a

time-dependent vector field X € S(W, V). In order to check out this, we realize that system
(22) describes the integral curves for the time-dependent vector field

0 0
X, =v—+b@)x +c(t)x")—,
dax av

which can be written as
X, =b®)X;+c() X, + X5. (23)

Note also that [ X, X3] ¢ V andnotonly V" = (X, X,, X3) is not a Lie algebra of vector
fields but also there is no finite-dimensional Lie algebra V' including V”. Thus, X cannot
be considered as a Lie system and we conclude that the first-order nonlinear oscillator (22)
describing integral curves of the time-dependent vector field (23) (which is not a Lie system)
can be described by means of the quasi-Lie scheme S(W, V).

Let us restrict ourselves to analyse those time-dependent changes of variables associated
with the generalized flows of G(W) with 8(t) = y(¢) and a(¢r) = 1/y(¢) and apply these
transformations to system (22). The main theorem of the theory of quasi-Lie systems tells us
that

ga(), B(1), y()x X € S(W, V).
Indeed, these time-dependent transformations lead to the systems

d_x, et _1 v/
diyo (24)
T YEHOb@) — 7Oy @)X +c@)y™ H)x",

which are related to the second-order differential equations

Y (i = =2y Oy OF + (2 (Ob() — 7Oy ()x" +c(@)y™ ()x".
But the theory of quasi-Lie schemes is based on finding a generalized flow g € G(W) such
that g4 X becomes a Lie system, i.e. there exists a Lie algebra of vector fields V; C V such
that gx X € S(Vp). For instance, we can try to transform a particular instance of systems
(24) into a first-order differential equation associated with a nonlinear oscillator with a zero
time-dependent angular frequency, for example, into the first-order system

dx/

FT fn',

Jv’ (25)
e f®cox™,
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related to the nonlinear oscillator
dZx’

dr?

with dt/df = f(z).
The conditions ensuring such a transformation are

yb) —y(t) =0, <) =coy " @), (26)

with f (1) = yfz(t), where y is a non-vanishing particular solution for y (¢)b(t) — y (t) = O.
We must emphasize that just particular solutions with y;(0) = 1 and y;(0) = 0 are related
to generalized flows in G(W). Nevertheless, any other particular solution can also be used to
transform a nonlinear oscillator into a Lie system as we stated. The Lie system (25) is the
system associated with the time-dependent vector field

X Lo (0,
= —F— |V — CoX — ).
T Ro o T v

As a consequence of the standard methods developed for the theory of Lie systems [13],
we join two copies of the above system in order to get the first integrals

— C())C/n,

1 Co .

I = —vf? — ——x", i=1,2,
2 n+1

and

h= iy Ly, L eox™
=L P iy T asr T he e

X} q 1 1 - 1 coxy+!

UL P\ 2 T heU b )
where Hyp(a, b, ¢, d) denotes the corresponding hypergeometric functions. In terms of the
initial variables, these first integrals for gy X read

<« nl, i=12, @7)

A I
i = 20Ok =Xy = o

and

L 1 <x1 1 1 - 1 coxt! )
o\ P 2 T U M L+ 1)
1 1 1 n+l
—ﬁHyp s =, 1+ , — lcoxz .
NS n+ 12 el (Lo + )

As a particular application of conditions (26), we can consider the following example of
[28], where the time-dependent Hamiltonian:

(28)

1 2(t —Gs
H(@) = Epz + _a)z( )x2 +cz)/1 Hz)(t)x“,

with y; being such that #,(¢) + w*(#)y1(¢) = O is studied. The Hamilton equations for the
latter Hamiltonian are

r=r (29)
p=—sy P 0x ! — o (0)x,

being associated with the second-order differential equation for the variable x given by

= —sczyf(ﬁz)(t)xs_1 — w*(1)x. (30)

14
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The latter differential equations are particular cases of our Emden equations with
b(t) = —a* (1), c(t) = —scty " P@), n=s-1. (31)

Note that here the variable p plays the role of v in our theoretical development. It can be
easily verified that these coefficients satisfy conditions (26). Therefore, we get that the time-
dependent frequency nonlinear oscillator (30) can be transformed into a new one with zero
frequency, i.e.

2.7
dx o p2ys—1
dr?

/ dr

1= | —,

vi()

reproducing the result given by Perelomov [28]. The choice of the time-dependent frequencies
is such that it is possible to transform the initial time-dependent nonlinear oscillator into the
final autonomous nonlinear oscillator. Then, we recover here such frequencies as a result of

an integrability condition. Moreover, in view of expressions (27), (28) and (31), we get, as far
as we know, new time-dependent constants of the motion for these nonlinear oscillators.

with

5.3. The Emden equation

In this section, we apply quasi-Lie schemes to Emden equations. These equations appear
broadly in the literature and have many applications; indeed, the review by Wong in 1977
[19] contains more than 100 cites. Here they are analysed in order to recover, under some
integrability conditions, a set of time-dependent constants of the motion.

The Emden equations we investigate are

X=a@®x +b®)x", n#l. (32)

The case n = 1 is removed because it can be treated directly by means of the theory of Lie
systems.
Emden equations are associated with the system of first-order differential equations

X =wv,
{i} =a(t)v+b(t)x". (33)

As in the preceding examples, let us verify that the scheme S(W, V) can be used to
handle this system. System (33) describes the integral curves for the time-dependent vector
field given by

a a
X, =v—+@®v+b)x")—,
ax av
which, in terms of the basis (13) for V, reads
X, = a(t)X4 + X3 + b(t)Xz,

so that X € S(W, V). We must remark that, as [ X3, X,] ¢ V, there is no Lie algebra of vector
fields containing the vector space V" spanned by X,, X3 and X4, and X, cannot be considered
as a Lie system.
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The time-dependent change of variables induced by a control g € G(W) transforms
system (33) into

dy’ (ﬁ(t) 7'/(t)> O

’

dr y() v y (1)

/ . 2 ; .
ﬁi=<ﬂn_éﬁz—“m>W+(mnmn— B (1) _ﬂa>+mnwn)ﬁ (34)
dr y(@®)  a) at) a@y@® al) a@y@)

bmyy" () ,,
+ ——Xx .
a(t)

According to Theorem 1, the latter systems describe the integral curves of the time-dependent
vector field gx X € S(W, V). Now, we must look for a Lie algebra of vector fields Vo C V
and a control g € G(W) such that g4 X € S(Vp).

For the sake of simplicity, let us suppose that 8(¢) = 0. Thus, system (34) leads to

dx’ y@ , o),
— =——x'+—v
dr v oy
dv’ ¥ (1 "t
W (o= DY gy O
dt alt) a(r)

We impose some conditions ensuring that this differential equation is a solvable Lie
system. For instance, we want it to be of the form

’

x™.

dx/
e f@ (enx'+cpv'),
t
dy’ (3%
- ¢ /n+ / ,
I f@) (cax™ + exv)
where the coefficients c;; are constant. Therefore, we get
y () ()
f®en =-——=, f®cn=—:,
y () y(0)
b)y" (1) a ()
t =" t =a(t) — —=,
f e o« f®)en =a(r) 20
that implies
€12 . AQ) cn y (@)
a(t) =——y({t) —m ——+a(t) = ——_.
C1|y )/(f) Cl1 V(t)
Ifwefixcy =1,c1) = —1,c1p =4and ¢;; = —1, and we define A(t) = fa(t)dt,the values

of y and « are

4
Y1) = ,/2/exp A, alt) = —— exp (A(D),
y ()

with appropriately chosen constants of integration to get y(0) = «(0) = 1 and
g(a(1),0,y()) € G(W). Nevertheless, any other particular solutions with different initial
conditions can also be used. Now, since
Cby"() 1)
() 4y@)

we see that
—b(t)y"(t) = dexp (2A(1))

16
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and
bf% ) 4A(1)
n+? ex
P n+3

which is equivalent to the expression found in [27] if we do not fix the initial conditions for
y(t) and a(?).
Now, let us obtain a constant of the motion for (35). As a(¢)/y (t) = 4f(t), we get
exp (A(1))
2 [exp(A@))dt’

Hence, the system (35) admits a constant of the motion in the form

> s /exp (A(t))dr = 0,

f@ =

m+1
I =-2v7— +x'v
n+1

If we invert the initial change of variables, we reach the following constant of the motion for
our initial differential equation:

I = (v2 — %x”“) exp (—2A(1)) / exp (A(1))dt — xvexp (—A(@2)),

which is equivalent to the one found by Sarlet and Bahar in [29].

5.4. Dissipative Mathews—Lakshmanan oscillators

In this section, we provide a simple application of the theory of quasi-Lie schemes to investigate
the time-dependent dissipative Mathews—Lakshmanan oscillator

(1+1xDHi — FO(1+1x)x — )2+ o()x =0, A > 0. (36)

More specifically, we supply some integrability conditions to relate it to the Mathews—
Lakshmanan oscillator [31, 32, 33, 36]

(1+AxD)i — Q)% +kx =0, >0, (37)

and by means of such a relation we get, as far as we know, a new time-dependent constant of
the motion.

Consider the system of a first-order differential equation related to equation (36) in the
usual way, i.e.

X =v,
2
XV X 38)
) = F(t)v + —ow(t s
v ) 1+ Ax2 w()l+Ax2
and determining the integral curves for the time-dependent vector field
2
Xv X 0 0
X, =(F@®v+ — ot —+v—.
! < @ 1+Aax2 w()1+kx2) v Uax

Let us provide a scheme to handle system (38). Consider the vector space V spanned by the
vector fields

X ad N axv? 9 X X ad X d (39)
=V — P = P =v_—,
: ox 1+Ax2dv 2T 1+ ax2 v ’ v
and the linear space W = (X3). The commutator relations
[X5, X1] = Xy, [X3, Xo] = —X>,
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imply that the linear spaces W, V made up a quasi-Lie scheme S(W, V). As the time-dependent
vector field X, reads in terms of the basis (39)

X =FO)X3 —o@) X, + X,

we get that X; € S(W, V).
The integration of X3 shows that

_x/’

X =
v=oa()v.

GgW) = {g(ot(t)) = {

a(t) > 0,a((0) = 1} ,
and the time-dependent changes of variables related to the controls of G(W) transform system
(38) into

X =a()v,

. / 70,12
v“Z(FO)—EﬁQ)v“—wU) a +a0)kxv

a(t) a(t) 1+ Arx7? 1+ax?

Suppose that we fix & — F'(#)a = 0. Hence, the latter becomes

X =a()v,

. w(@) x Ax'v?

= — + o (r .
v a(t) 1+ rx? o )1 + Ax'?

Let us try to search conditions for ensuring the above system to determine the integral curves
for a time-dependent vector field of the form X (¢, x) = f(#)X(x) with X € V,e.g.

i = fn,
V=fm<

x’ ax'v?
+ )
1+ Ax2 1+Ax’2)

In such a case, a(t) = f(t), w(t) = —a?(¢) and therefore w(t) = —exp(2f F(t)dt). The
time reparametrization dt = f(¢)d¢ transforms the previous system into the autonomous one
dx/
dr
dv’ x' Ax'v?
- = +
dt 1+ax?  1+2x?

’
=70,

determining the integral curves for the vector field X = X; + X, and related to a Mathews—
Lakshmanan oscillator (37) with k = 1. The method of characteristics shows after a brief
calculation that this system has a first integral

1) 1+ ax"?
x' V)= ——,
1+A072

that reads in terms of the initial variables and the time as a time-dependent constant of the
motion

a2 (1) + Ao (1) x>
1@ x ) == s m?

for the time-dependent dissipative Mathews—Lakshmanan oscillator (36) getting, as far as we
know, a new t-dependent constant of the motion.
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6. Conclusions and outlook

We develop the theory of quasi-Lie schemes as a generalization of the theory of Lie systems,
and we prove some of their fundamental properties and find applications. In particular,
we recover a time-dependent superposition rule for a family of dissipative Milne—Pinney
equations. This result, which can be found in [37], is seen here from a new perspective as a
result of a systematic treatment of the family of dissipative Milne—Pinney equations admitting
such a time-dependent superposition rule.

Additionally, we explain from a geometric point of view some transformation properties of
time-dependent nonlinear oscillators. More precisely, we provide a geometrical understanding
for some results of the Perelomov’s paper [28]. Moreover, the quasi-Lie approach allows us to
investigate quantum nonlinear Hamiltonians and supply an explanation of the transformation
properties for the quantum analogue of this physical model. Finally, we also recover time-
dependent constants of the motion for the Emden equations and certain new dissipative
time-dependent Mathews—Lakshmanan oscillator.

We hope that this shows that the theory of quasi-Lie schemes can be viewed as a
good approach to study many interesting systems of differential equations and quantum
Hamiltonians from the same geometric viewpoint. We follow this idea in some works under
development [35].

Finally, the here developed examples prove that the set of time-dependent changes of
variables allowing us to transform a differential equation in a scheme into a Lie system can
be broader than those detailed for the group of such a scheme. We have already found an
explanation for this fact which will be included in next works within the theory of quasi-Lie
schemes.
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